Sensory motor integration in the context of locomotion with the use of virtual reality

Supervisor: Dr. Meir Plotnik

Student: Amit Benady

Center of advanced technologies in rehabilitation, Sheba medical center

Braking effect

Cano Porras et al., 2019, Revised

Can we see gravity? Evidence from gait

Exertion effect

Cano Porras et al.,

Can we see gravity? Evidence from gait
2019, revised

The role of vision

Self paced mode

Introduction

- Indirect prediction processes controlling locomotion patterns relying on accumulated experience, promptly activate preprogrammed gait patterns in the presence of environmental changes.
- Sensory reweighting recalibration of the relative influence of visual and body-based cues leading to gradual further modifications of walking patterns: an iterative mechanism

Internal model of gravity

Sensory-motor integration incorporates perception of gravity and visual inputs during locomotion.

The model predicts that muscle synergies activation will be triggered only by visual cues

Visual conflict paradigm

-self paced

-randomized

-gait speed primary outcome

-transition 5 sec'

Results

Interim conclusions

- Visual cues alone appear to drive the perception of gravity
- People brake their downhill "speeding" when they see a downhill slope, even when there is no inclination
- People invest energy (speed up) when they see uphill slope even when there is no inclination
- The sensory reweighting analysis shows that after initial period post de stabilizing trigger (about 10 sec)- locomotion control returns to rely on body based cues

Objective

- 1. Expand the existing knowledge on the ramifications of the internal model of gravity on human locomotion i.e., direct impact on muscle synergies.
- 2. Confirm that visual dependency is a key player regarding the perception of gravity, by using an "orthogonal" paradigm.

Hypotheses

- 1. Similarly to the adaptation of the body kinematics seen during real incline walking, the same pattern of muscle activation would be observed during a visually stimulated virtual environment
- 2. The strength of the effects seen during incongruent conditions will correlate with visual dependence level

Rod and Frame test

Assesses visual dependency

Bagust, J. (2005). Assessment of verticality perception by a rod-and-frame test: preliminary observations on the use of a computer monitor and video eye glasses. *Archives of physical medicine and rehabilitation*, 86(5), 1062-1064.

Analyzed muscles

EMG results- Gastrocnemius

Lay, A. N., Hass, C. J., Nichols, T. R., & Gregor, R. J. (2007). The effects of sloped surfaces on locomotion: an electromyographic analysis. *Journal of biomechanics*, 40(6), 1276-1285.

ZB235- condition B, Gastrocnemius

ZB235- averages

Pre

GCR 500

RFR

Normalyzed cycle (%)

Transition

Post

Study data

