Gene-expression Analysis of Pediatric Patients with Multiple Sclerosis Treated with Natalizumab

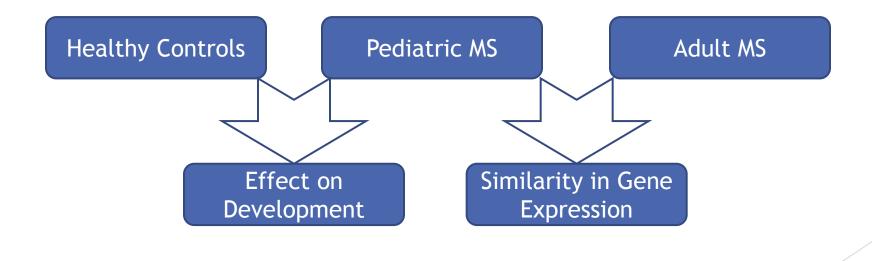
Bracha Robinson

Multiple Sclerosis Center, Neurogenomics Laboratory With Dr. Michael Gurevich

Pediatric MS

Definition of MS

- chronic inflammatory autoimmune disease of the CNS
- Inflammatory brain lesions in both space and time
- Usually diagnosed at age 20 to 40
- > 2-5% of MS cases are pediatric (onset at age <18 years)
- Majority of cases are relapsing-remitting
- Although adults and children share basic aspects of the disorder, children have different clinical, neuroimaging, laboratory features, and courses of the disease.
- Treatment for pediatric MS is based on adult therapies, but their efficacy in children is still being determined through clinical trials

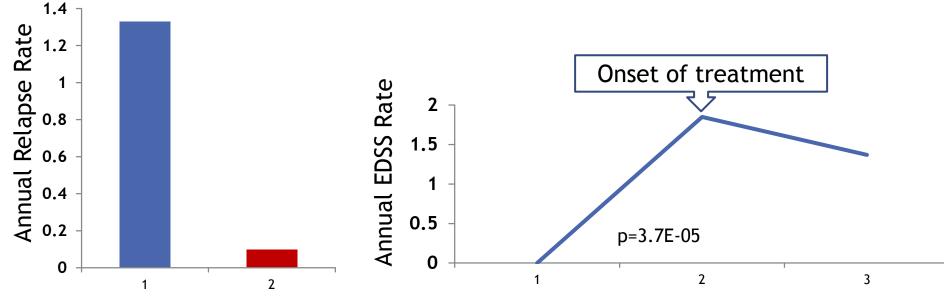

Natalizumab

- Humanized monoclonal Antibody targeting a4 subunit of a4b1-integrin
- ► FDA approved therapy for adults
- Clinical trials have shown that Natalizumab works well in children
 - ► Fewer relapses
 - ► No enhancing lesions on MRI
 - No association with PML (unlike adults)
 - Similar efficacy to adults

Effect on childhood development is not fully understood

Our Goal

- To determine whether Natalizumab treatment affects the gene expression of essential childhood and adolescent developmental genes
- To determine whether Natalizumab induces changes in gene expression in pediatric MS similar to adult MS patients

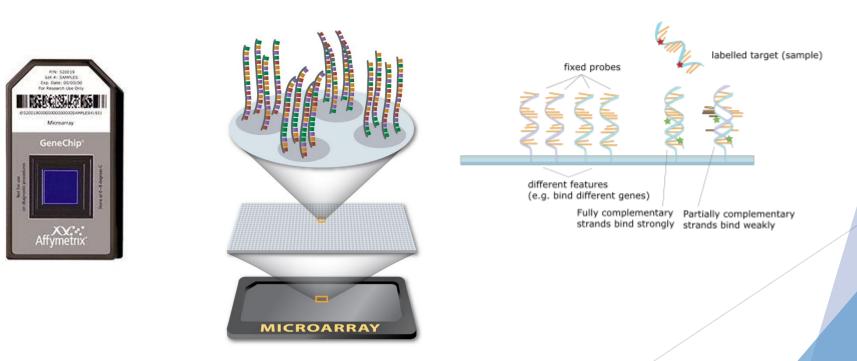


Patient Characteristics

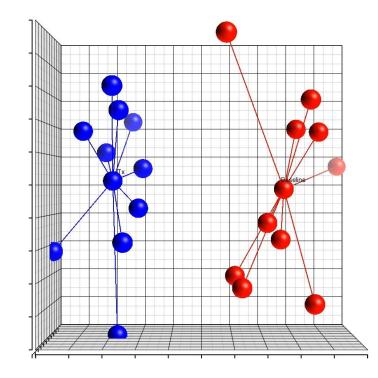
- 18 Patients treated with Natalizumab
 - ► Of these, 10 patients were sampled for gene expression analysis

			i
	Total n=18	Female n=10	Male n=8
Age MS onset	13.9±0.8	13.8±1.0	14.1±1.2
Age Tx start	14.8±0.6	14.5 -0.8	15.1±1.1
EDSS before Tx	1.67±0.27	1,95±0.36	1.31±0.38
Annual Relapse Rate before Tx	1.33±0.26	1.20±0.31	1.48±0.45

Clinical Results: Natalizumab induces clinical efficacy


1 - before treatment

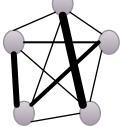
Switch of Annual EDSS rate by Natalizumab treatment


2 - one year after Natalizumab treatment We now know Natalizumab is an effective treatment in pediatric patients. How does Natalizumab effect gene expression?

Genetic Microarray Analysis

- Microarrays are microchips that contain genetic information
- They can be used to determine expression of all genes simultaneously in a patient

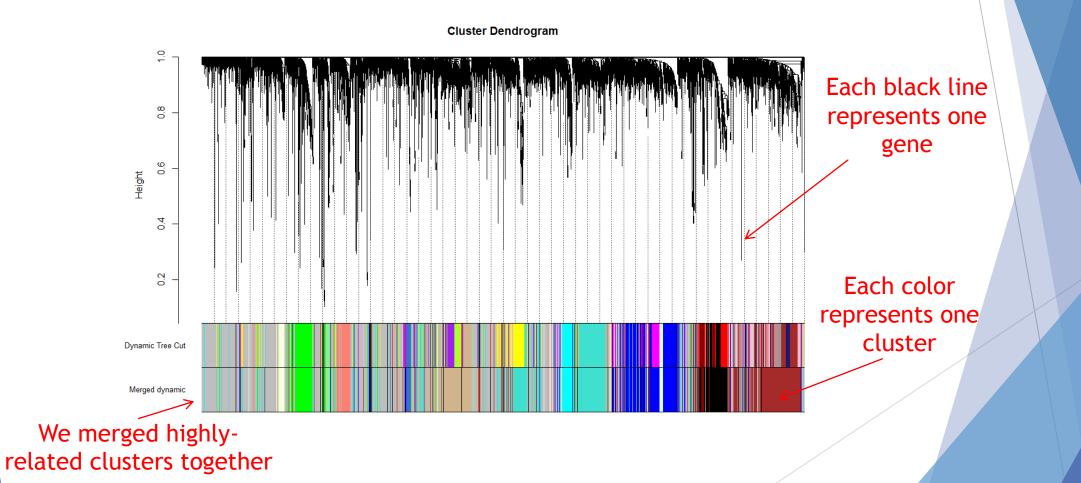
PCA Analysis of Natalizumab-affected gene analysis: two distinct clusters

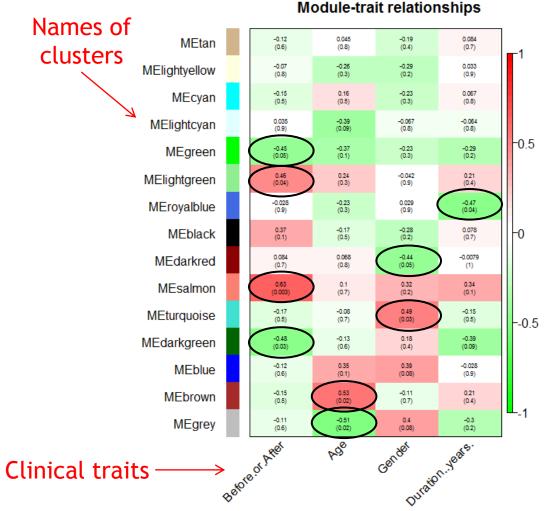


Red = Before treatment Blue = After treatment

Weighted Gene Co-expression Network Analysis (WGCNA)

- Developed by Steve Horvath and Peter Langfelder of UCLA in 2008
- This method creates clusters of highly correlated genes which can be related to external traits

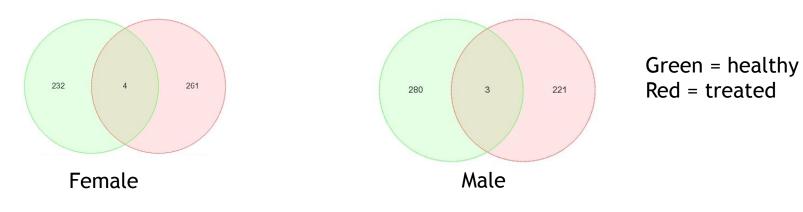

Step 1: Construct a Network Quantify connection and determine interaction patterns between genes


Step 2: Identify Modules Find gene clusters

Step 3: Relate Modules to External Information Find biologically interesting modules

WGCNA: Gene Clusters

WGCNA: Comparison to External Traits



Red = positive correlation Green = negative correlation (p-values in parentheses) Circles = $p \le 0.05$

Clusters that are correlated with treatment are not the same clusters that are correlated with age, gender, and duration → Natalizumab does not affect age-related genes

Another approach: analyzing age-related genes using external database

- Using publically available databases, we found a group of healthy controls (n=17). We determined the gene expression that correlates with age.
- The genes most associated with Natalizumab treatment had little similarity (~2%) to the genes most associated with age in these control groups.

Future Research Aims

- Evaluation of developmental genes based on age alone has limitations.
- In order to improve our analysis, we plan on obtaining Tanner scores (quantification of puberty) in our control and Natalizumab populations to determine whether Natalizumab-related genes affect pubertal development.

WGCNA: Comparison to Adults

- It has been previously shown that in adults, Natalizumab alters expression of genes related to B cell activity
- We analyzed the clusters of genes that correlate to Natalizumab treatment (722 genes) using ingenuity software → they contain genes related to B cell development

Diseases or Functions Annotation	p-Value
differentiation of pre-B lymphocytes	3.05E-09
differentiation of B lymphocytes	5.34E-07
arrest in differentiation of B lymphocytes	1.37E-06
proliferation of B lymphocytes	4.23E-06
development of B lymphocytes	5.22E-06
development of pre-B lymphocytes	1.37E-05
expansion of B lymphocytes	0.000104
proliferation of pre-B lymphocytes	0.000245
lifespan of B lymphocytes	0.000486
differentiation of plasma cells	0.000611
development of follicular B lymphocytes	0.000835

In other words, Natalizumab alters gene expression in children and adults in similar ways

Conclusion

- Natalizumab treatment is an effective treatment in pediatric patients.
- Natalizumab does not affect genes that are associated with childhood development.
- Natalizumab-related genes are associated with B cell activity, similar to its effects on adults.