Surgical B-T Shunt vs. percutaneous ductal stenting : which is better for branch pulmonary artery growth and patient survival

> Ori Stern Medical student Tel-Aviv university Hetz Project

Introduction

- Prevalence of congenital heart disease is 8/1000 live births
- Congenital heart defects can change the way blood flows through the heart and lungs
- Non-oxygenated blood is pumped out to the body without going through the lungs to pick up oxygen
- Less oxygen delivered to the body and can cause cyanosis
- Approximately 5 g/dL of unoxygenated hemoglobin in the capillaries generates the dark blue color appreciated clinically as cyanosis
- If not treated on time might be life threatening

Low oxygen levels in the blood cause the lips, fingers, and toes to look blue (cyanotic)

*ADAM

Blalock-Taussig shunt

 Surgical procedure used to increase pulmonary blood flow for <u>palliation</u> in duct dependent CHD

Helen B. Taussig

Alfred Blalock

Vivien Thomas

Blalock-Taussig-Thomas shunt

Relieve cyanosis and allow for growth of the pulmonary arteries

Indications for BT shunt

The first area of application was Tetralogy of Fallot:

Indications for BT shunt

Biventricular circulation

- Tetralogy of Fallot w/ severe pulmonary stenosis or atresia
- Transposition of great arteries with pulmonary stenosis
- Severe Ebstein's Anomaly

Univentricular circulation

- Tricuspid atresia
- Pulmonary atresia, intact ventricular septum
- Complex single ventricle with duct dependent pulmonary circulation
- Hypoplastic left heart syndrome

Right

104 YUAN, ET AL. THE B-T SHUNT

TABLE 1 A Prognostic Comparison between Modified and Classic Blalock-Taussig Shunts ^{30,38,48-57}			
	Modified	Classic	
Rise in SaO ₂	Greater	Smaller	
Post-shunt increase in the pulmonary arterial arterial index (mm ² /m ²)	158 ± 21	117 ± 52	
Post-shunt pulmonary arterial index (mm ² /m ²)	431 ± 188	189 ± 106	
Pulmonary arterial distortion (%)	6.1–50	17–75	
Postoperative diaphragmatic paralysis requiring subsequent operation for placation (%)	4	10	
Interval for an additional shunt/repair (month)	12.4	26.1-27.7	
Adequate overall palliation (%)	98 (at eight months), 91(at 12 months), 58 (at 18 months)	87 (> one month of age) and 54 (< one month of age) (at four years)	
The freedom from cardiac event (%)		80.5 (at one year) 54.9 (at three years)	
Shunt patency (%)	88.8 (three and five years)	90 (at one year) 62 (at two years) 78 0 (at three years)	
Early shunt failure (%)	20.8	51.7	io fouro,
Reoperation (%)	15.4		
Overall hospital mortality (%)	3.1–11	2.3-8	
		50 (< two v 28 (two we	veeks of age) eks to six months of age)

Percutaneous PDA stent

Journal of the American College of Cardiology © 2004 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 44, No. 2, 2004 ISSN 0735-1097/04/\$30.00 doi:10.1016/j.jacc.2004.03.066

Initial Results and Medium-Term Follow-Up of Stent Implantation of Patent Ductus Arteriosus in Duct-Dependent Pulmonary Circulation

Mazeni Alwi, MRCP, K. K. Choo, MRCP, Haifa Abdul Latiff, MD, Geetha Kandavello, MRCP, Hasri Samion, MD, M. D. Mulyadi, MD

Kuala Lumpur, Malaysia

Objectives

Assessment of :

- Morbidity and mortality associated with BT shunt at our institution
- Frequency and severity of pulmonary artery stenosis associated with BT shunt
- Subgroup comparison to PDA stenting

Methods

- Retrospective study following patients who underwent BT shunt and patients who underwent PDA stenting at our institution
- Clinical data of patients were collected:

Diagnosis

Patient demographics (gender, age at operation, weight)

Percentage of complicated cases (prematurity/heterotaxy/genetics/low birth weight)

Circulation type (univentricular or biventricular physiology)

Early mortality and survival to second operation

Presence of antegrade pulmonary blood flow

Non cardiac diagnoses

Complications

Methods

- Review of imaging including: echocardiogram, angiography and CT/MRI before the procedure and at set intervals in follow up
- Hypoplastic left heart syndrome patients were excluded

Initial results

- 149 patients were reviewed, 140 following BTS and 9 after PDA stenting (1 after both).
- 127 underwent modified BTS and 13 underwent classical BTS.

	BTS	PDA stent
Number	140	9
Gender M/F (%)	59/41	67/33
Survival (%) Survival to second surgery Waiting for second surgery Early mortality after procedure Late mortality after procedure Unknown	54 2 12 4 28	44.5 44.5 0 11 0

Summary

- Both procedures are good for pulmonary artery growth
- There is a high percentage of pulmonary arterial distortion and stenosis after BT shunt
- Therefore, our study examines the effect on the pulmonary arteries and examines the option of alternatives for the surgical BT shunt

