Normal Fetal Posterior Fossa: New Biometric reference data and Possible Clinical Significance

Ber Roee, 4th year medical student, Sackler School of Medicine, Tel Aviv University

Supervised by:

Dr. Katorza Eldad, Antenatal Diagnostic Unit, The Chaim Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University

Outline

- Overview of the development and malformations of the posterior fossa (PF)
- Diagnosis of posterior fossa malformations
- Measuring new reference data methods and results
- Possible Clinical Applications

My experience in the Arrow Project

Anatomy of the PF

Midsagittal plane

Anatomy of the PF

Midsagittal plane

Anatomy of the PF

Development of the PF

Development of the Vermis

- Cephal to caudal development of the vermis
- 16th week full vermis and cerebellum (3 lobes)
- 18th week 4th ventricle fully covered
- The formation of fissures and lobules continue

PF malformations

- A common finding
- Broad spectrum of diagnoses and prognoses
- No universally acceptable classification:
 - Patel and Barkovich (2002):
 Hypoplasias and displasias
 - Tortori-Donati (2005):Cystic and non-cystic
 - Guibaud (2006):

Agenesis: Complete or partial absence of a structure

Hypoplasia: Small but complete structure

Atrophy: Secondary volume diminution

Diagnosis of PF malformations

Plea for an anatomical approach to abnormalities of the posterior fossa in prenatal diagnosis

L. Guibaud and V. des Portes Ultrasound Obstet Gynecol 2006; 27: 477–481

Dandy-Walker malformations

- Recognized by Dandy 1914 (described by Virchow 1863)
- The classic triad:

Complete/partial vermian agenesis

Enlarged PF with upward displacement of the tentorium and the torcular

Cystic dilation of the 4th ventricle

Dandy-Walker malformations

- Well defined anatomical entity
- Isolated or as a part of a syndrome (Joubert, Walker-Warburg and more)
- Prognosis varies
- Other PF malformations:
 - With enlargement of the CM: Blake's pouch,
 Arachnoid cyst, Mega CM
 - Without enlargement of the CM: Dysplasia, asymmetry, infections, ischemia...
 - Prognosis varies even more

Diagnosis of PF malformations

Plea for an anatomical approach to abnormalities of the posterior fossa in prenatal diagnosis

L. Guibaud and V. des Portes
Ultrasound Obstet Gynecol 2006; 27: 477–481

Existing biometric data

- US biometry numerous studies
- MRI biometry comprehensive study by Garel et al.:
 - Cohort of 589 normal fetuses
 - 5 measurements of structures in the PF:
 - Vermis: A-P, S-I, cross sectional area (CSA)
 - Pons: A-P
 - Cerebellum TCD

Existing biometric data

Vermian CSA, Pons A-P

Vermis A-P, Hight

Existing biometric data

Our Study

Objectives:

- Re-evaluation of existing reference data
- Evaluation of new biometric reference data
- Possible clinical applications of this data

Methods

Cohort:

- Fetuses with no pathological finding in the posterior fossa, and mild to none pathological finding in the brain
- 215 fetuses (151-211)
- GA 25-39 wks
- Indication stats:
 - Suspected anomaly 50%
 - Maternal CMV infection 23%
 - Disorders in the family/ previous pregnancies/ genetic disorders 13%
 - Extra-cranial anomalies 10%
 - Others
- Finding stats (MRI):
 - No intra-cranial findings 80%
 - Mild Vent.asymmetry/ Vent.megali 20%

Methods

- Measurments:
 - Brainstem, Cerebellum, Vermis, CM
 - Sagittal and axial planes
 - 5 of existing data
 - 8 of new reference data
 - Relations between structures' biometry:
 - Ant/Post vermian lobes (VLR)
 - Cerebellar hemispheres (CHR)
 - Vermian CSA/ CM CSA (VCMR)
 - Inter-observer deviation was calculated
- 8 cases of pathological fetuses (a-h)

Results

Results

Results

Results - Interobserver

	T	\neg	\sim
+	Ţ١	$\overline{}$	U

			Mean	Std	
Variable	ICC	95% CI	difference	difference	95% LOA
CS (cm^2)	0.983	(0.96,0.99)	0.275	0.371	(-0.45,1)
CP (mm)	0.977	(0.95, 0.99)	2.528	2.553	(-2.48, 7.53)
TCD (mm)	0.975	(0.94, 0.99)	0.867	0.947	(-0.99, 2.72)
VH (mm)	0.964	(0.92, 0.98)	0.319	0.58	(-0.82, 1.46)
CMS (mm^2)	0.96	(0.91, 0.98)	-20.434	22.022	(-63.6,22.73)
VS (mm^2)	0.954	(0.9, 0.98)	10.774	13.712	(-16.1,37.65)
VALS (mm^2)	0.954	(0.9, 0.98)	1.385	6.556	(-11.46,14.23)
VPLS (mm^2)	0.938	(0.87, 0.97)	6.706	10.424	(-13.72,27.14)
BSS (mm ²)	0.889	(0.77, 0.95)	4.31	24.82	(-44.34,52.96)
PS (mm^2)	0.871	(0.73, 0.94)	-0.352	13.292	(-26.4, 25.7)
APDV (mm)	0.824	(0.64, 0.92)	0.415	1.09	(-1.72, 2.55)
APDP (mm)	0.804	(0.61, 0.91)	0.177	0.704	(-1.2, 1.56)
VP (mm)	0.68	(0.4, 0.84)	5.5	5.308	(-4.9, 15.9)
PH (mm)	0.68	(0.4, 0.84)	0.253	0.803	(-1.32, 1.83)

Possible Clinical Applications

Case b:

- Prev. diagnosis:Cerebellar asymmetry
- Average CHR:1 (p-0.05)
- Normal CHR:
 0.88-1.12 (3rd-97th per.)
- Case b CHR:1.52
- New diagnosis:Cerebellar asymmetry

Possible Clinical Applications

Cases g and d:

- VP, VS below 3rd per.
- Prev. diagnosis:Vermian hypoplasia

Case g:

- VLR normal
- New diagnosis:Complete vermian hypoplasia

Case d:

- VLR above 97th per.
- VALS normal
- New diagnosis:Vermian inf. hypoplasia
- Is prognosis different?

a

Possible Clinical Applications

Cases g and d:

- VP, VS below 3rd per.
- Prev. diagnosis:Vermian hypoplasia

Case g:

- VLR normal
- New diagnosis:Complete vermian hypoplasia

Case d:

- VLR above 97th per.
- VALS normal
- New diagnosis:Vermian inf. hypoplasia
- Is prognosis different?

q

d

Possible clinical applications

Summary

- PF malformations a difficult challenge
- Existing biometry too much left for subjective evaluations
- New biometry objective tool
- Next step
- Help the patient!

Thank you