# micro-RNAs as biomarkers in children who underwent surgery for CHD

#### mentors: Dr. Yael Nevo-Caspi & Prof. Gidi Paret

Or Bercovich Liat Mor





# What will we talk about...

- Congenital heart defects (CHD)
- Scientific background
- miRNAs in CHD
- Lab work
- •What's next





# Congenital heart defects (CHD)

- Incidence: 8/1000
- Most common birth defect
- Causes:
  - Unknown
  - Infections (e.g. rubella)
  - Medication (e.g. Thalidomide)
  - Alcohol/Tobacco
  - Inbreeding
  - Nutritional status (undernutrition, DM, etc)
  - Genetic mostly sporadic mutations
- Attitudes toward pregnancy termination
- Cyanotic vs. non-cyanotic





### Congenital heart defects (CHD)

- Treatment:
  - Some defects do not need intervention
  - Medications (diuretics, digoxin, etc)
  - Catheter based procedures
  - Heart surgery
  - Heart transplant
- Complications after surgery
  - Leading cause of birth defect related deaths
  - Early mortality 5-10%
  - SIRS (1/3 of cases)
  - Arrhythmias and heart failure
  - Lung injury

Neurological and renal complications





# The need for early diagnosis

- Early diagnosis of complications may improve treatment and its outcomes
- Today's biomarkers:
  - Biomarkers for myocardial injury:
    - Troponin, CPK, BNP
    - Cardiac miRNA
  - There are no specific inflammatory biomarkers





### **MicroRNA**

- MicroRNAs (miRNAs) are small non-coding RNA molecules
- They consist 19–24 nucleotides
- Constitute 1-3% of the human genome (over a thousand have been identified in human)
- Main role: post-transcriptional regulation
  - Inhibit mRNA translation
  - Promote mRNA degradation





### **MicroRNA**

- Over 50% of human genes are likely regulated by miRNA
- Tissue-specific expression pattern
- Dysregulated miRNA expression:
  - Cancer
  - Inflammatory diseases
  - Autoimmune diseases
- Role in immune system:
  - Immunomodulation and fine-tuning





### **MicroRNA**

- Circulating miRNAs in the serum:
  - Cell damage and cell death
  - Cell communication
  - High stability
  - Ribonucleoprotein complex
  - Intercellular communication via extracellular vesicles (EVs)
    - Ectosomes
    - Exosomes
    - Apoptotic bodies
- Also found in urine, saliva, CSF and breast milk



Breast milk miRNAs may have a role in immunoregulation









# A promising field of research...

Potential therapeutic use

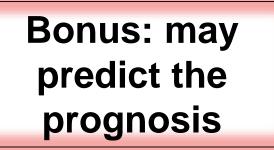
**Requirements:** 

- 1. Specificity of miR to pathology
- 2. No/minimal side effects
- 3. Bio- availability
- 4. Cost effectiveness

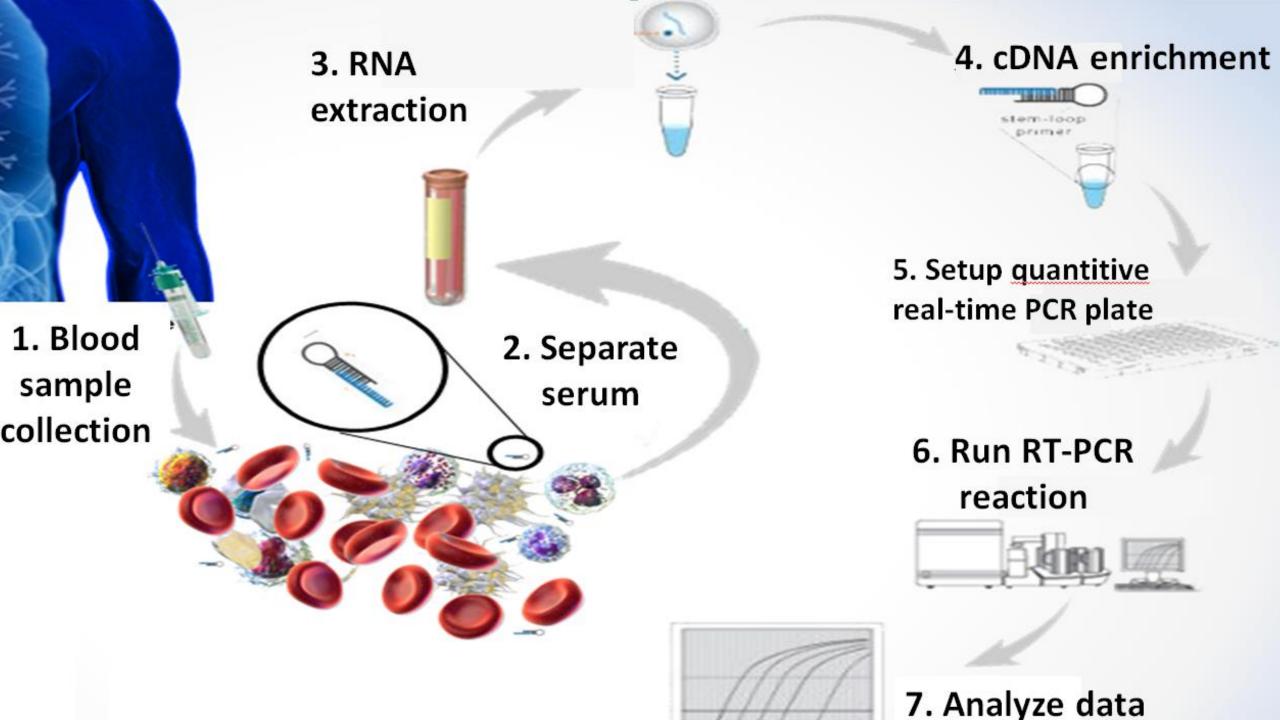


No micro-RNA-based drug is in the market...yet




# A promising field of research...

Specific biomarkers


**Requirements:** 

- 1. Specificity of miR to pathology
- 2. Significant change in expression
- 3. Circulating miRs
- 4. Stable in blood
- 5. Reliable testing
- 6. Simple, quick and reproducible diagnosis













# Immunomodulatory miRNAs as biomarkers in pediatric patients after cardiac surgery

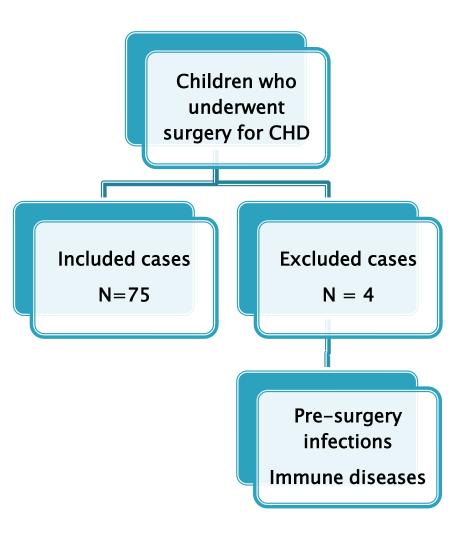
Mentors: Prof. Gidi Paret

Dr. Yael Nevo-Caspi

**Or Bercovich** Pediatric intensive care unit – Sheba Medical Center






Examination of the association between the expression of

immunomodulatory miRNAs and the inflammatory response following surgery for CHD

Development of a diagnostic tool that will improve medical management and outcome following surgery for CHD



# Research pupolation





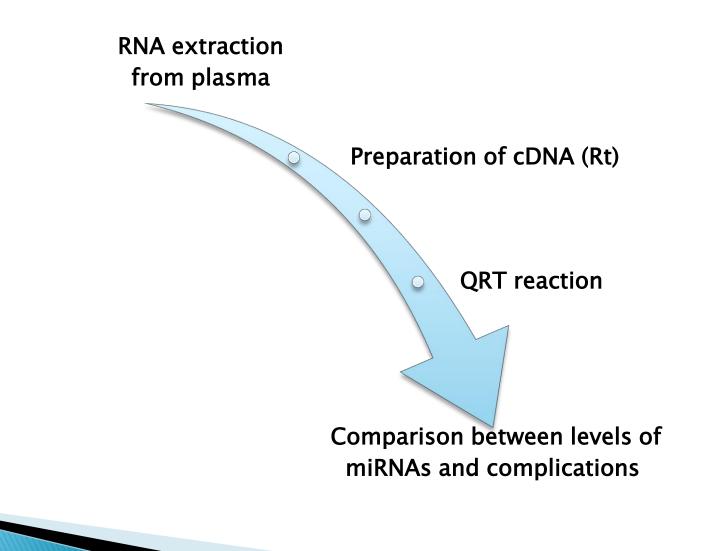
### Immunomodulatory miRNAs in CHD

- A better understanding of the inflammatory response to
  - cardiac surgery may be the key to development of successful
  - strategies to minimize patient morbidity and mortality
- Inflammatory response to cardiac surgery:
  - Prevent infections
  - Wound healing
- Validated biomarkers are essential for guiding drug therapy



# Immunomodulatory miRs in CHD

- miRNA 155 & 146a -
  - Found in EVs
  - Regulate many aspects of the immune response
- miRNA 146a and 146b -
  - Low expression may cause a hyperactive immune response




# Immunomodulatory miRs in CHD

- miRNA 21 -
  - highly expressed in the fetal heart
  - Promote inflammatory mediators
  - Important marker of immune cell activation in multiple contexts





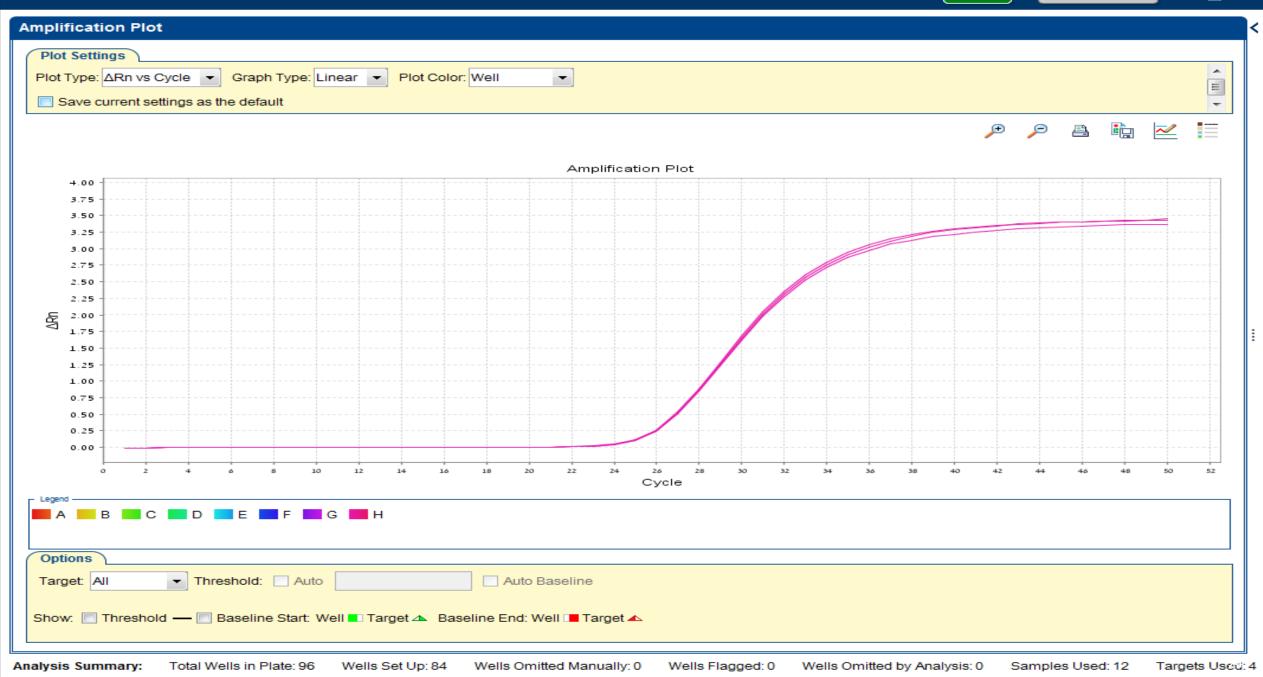




# Lab work

- We test by RQ PCR 4 miRNAs for each patient
- Each miRNA is tested in 4 different times:
  - Oh before surgery
  - 6h
  - 12h
  - 24h

#### RQ calculation:


- High expression of a specific miRNA  $\rightarrow$  Fluorescence in an earlier cycle (and vice versa)
- miRNA expression after surgery of each child is compared to 0h

| Experiment | t: Ol | R-1 ( | 0412 | 216 |
|------------|-------|-------|------|-----|
|------------|-------|-------|------|-----|

Type: Comparative CT ( $\Delta\Delta$ CT)

Reagents: TaqMan® Reagents Analyze

Analysis Settings



|             | Plot           |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
|-------------|----------------|---------------------------|------------|------|---------|----------|--------|-----------|---------|---------|------|----|----|----|----|------|------|----|----|----|----|----|
| ot Settings |                | _                         |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| t Type: ΔR  | n vs Cycle     | <ul> <li>Graph</li> </ul> | Type: Line | ar 🔻 | Plot Co | olor: We | ell    | •         |         |         |      |    |    |    |    |      |      |    |    |    |    | 1  |
| Save curre  | ent settings a | s the defau               | ilt        |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
|             |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      | Æ    | P  | P. |    | ~  |    |
|             |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    | -  |
|             |                |                           |            |      |         |          |        | A         | mplific | ation F | Plot |    |    |    |    |      |      |    |    |    |    |    |
| +.00        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 3.75        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 3.50 -      |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 3.25        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 3.00        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 2.75        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 2.25        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
|             |                |                           |            |      |         |          |        |           |         | //      |      |    |    |    |    |      |      |    |    |    |    |    |
| 2.00        |                |                           |            |      |         |          |        |           | //      |         |      | /  |    |    |    |      |      |    |    |    |    |    |
| 1.50        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 1.25        |                |                           |            |      |         |          |        |           | //      |         |      | /  |    |    |    |      |      |    |    |    |    |    |
| 1.00 -      |                |                           |            |      |         |          |        | _//       |         |         | -/   |    |    |    |    |      |      |    |    |    |    |    |
| 0.75        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 0.50        |                |                           |            |      |         |          |        | · · · · · |         | /       |      |    |    |    |    |      |      |    |    |    |    |    |
| 0.25        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 0.00        |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| 0           | 2 4            | 6 S                       | 8 10       | 12   | 14 1    | 16 1     | 8 20   | 22        | 24      | 26      | 28   | 30 | 32 | 34 | 36 | 38 4 | 0 42 | 44 | 46 | 48 | 50 | .5 |
| end —       |                |                           |            |      |         |          |        |           |         | Сус     | le   |    |    |    |    |      |      |    |    |    |    | _  |
| АВ          | C D            | E                         | F 📕 G      | н    |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
|             |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| tions       |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| otions      |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |
| rget: All   | - T            | hreshold:                 | Auto       |      |         |          | Auto E | Baselir   | ne      |         |      |    |    |    |    |      |      |    |    |    |    |    |
|             |                |                           |            |      |         |          |        |           |         |         |      |    |    |    |    |      |      |    |    |    |    |    |

Experiment: OR-1 041216

 $\bigcirc$ 







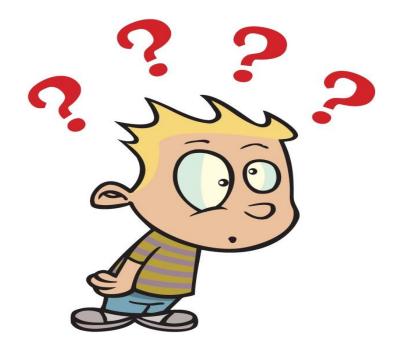
- Continue lab work
- Statistical analysis
- Writing







#### Immunomodulatory miRNAs may help physicians in the future


to take preventive steps against expected complication







### Questions







### Thank you!

Department of Pediatric Intensive Care The Edmond and Lily Safra Children's Hospital המחלקה לטיפול נמרץ ילדים בית החולים אדמונד ולילי ספרא לילדים



#### MicroRNAs as Biomarkers for Brain Damage Following Cardiac Surgery in Children

#### Mentors: Dr. Yael Nevo-Caspi & Prof. Gidi Paret



Liat Mor



### BACKGROUND

- •Brain injury is the most prevalent post-operative complication (40-70%)
- °Wide range of neurological injuries
- •Mechanism: brain hypoxia-ischemia
  - -Surgery induced stress and inflammation
  - -Weak heart due to CHD

- Cardio-pulmonary by-pass (???)

# Current testing methods

**Pediatric Cerebral Performance Category (PCPC)**cognitive function following a critical illness or injury

Pediatric Stroke Outcome Measure (PSOM)-

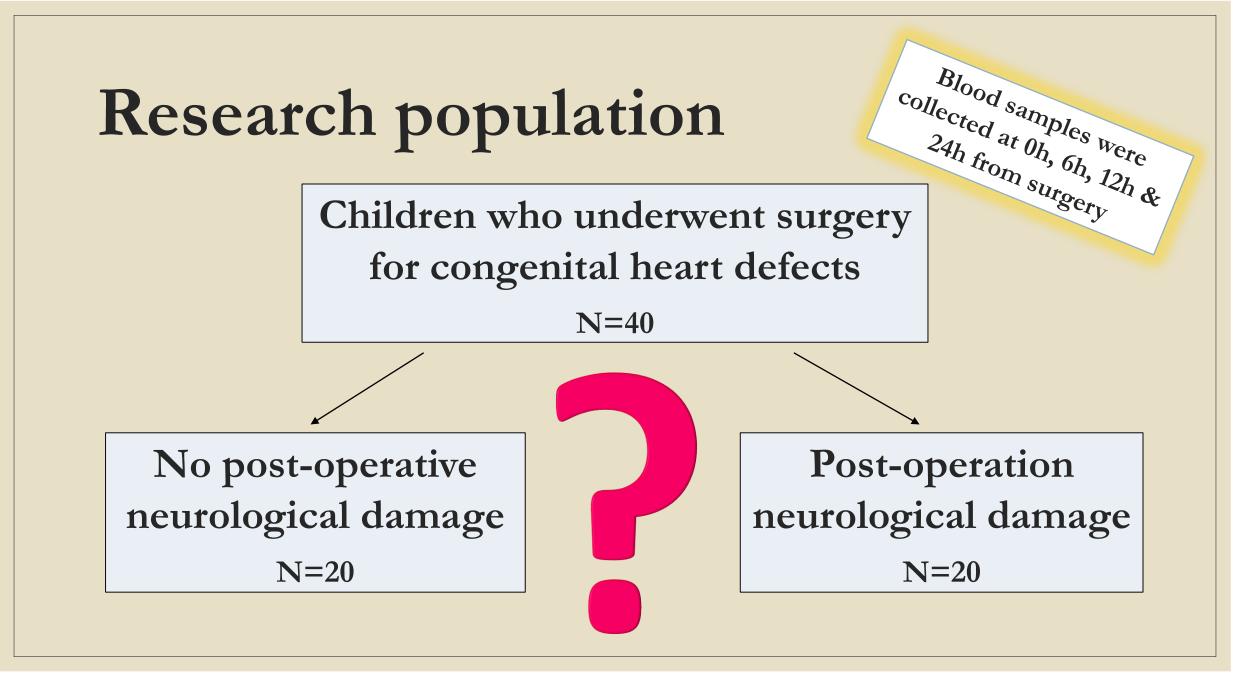
5 subscales: right+ left sensorimotor, language production+ comprehension, and cognitive function

#### **Disadvantages:**

- Gross assessment based on observer's impression
- Insignificant while child is unstable late diagnosis
- Do not indicate prognosis

Scale of 1-6

Scale of 0-2 per function


# Aim of study

To discover a new biomarker that will enable early diagnosis of brain damage and it's prognosis Why?

1. To allow neuroprotective therapy

(=hypothermia ???, adiponectin etc.)

- 2. To ensure close lookup on brain-functions
- 3. To adjust additional therapy and recovery plans



### Deciding on miRs was difficult...

| Requirements                                                 | Difficulties                                             |
|--------------------------------------------------------------|----------------------------------------------------------|
| Brain specific/                                              | 70% of known miRs are                                    |
| brain enriched miR                                           | expressed in the brain                                   |
| Present in serum                                             | Some promising miR are<br>un-detectable in serum         |
| Dysregulation of<br>expression due to<br>neurological damage | Inconsistent trends of most<br>miRs in different studies |

## Micro-RNA 124

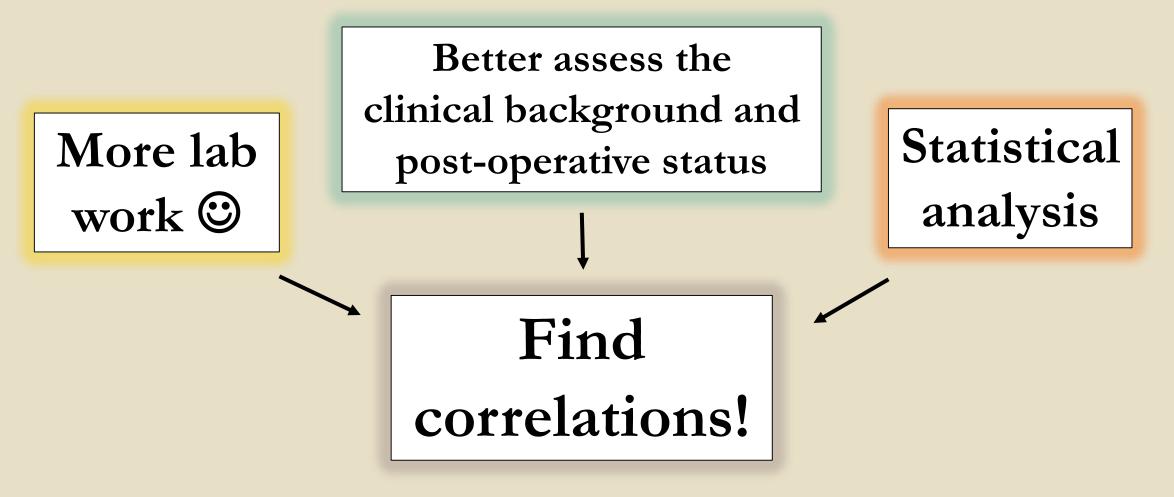
- •A significant brain-enriched miR
- Expressed in various neurological processes: neurodevelopment and differentiation, neuronal degradation & stress
- °The most researched brain-specific miR
- •To our needs:
  - Significantly elevated after 6h in stroke patients
    extent of elevation strongly correlates with neurological outcome in rat study

### Micro-RNA 107



- •A brain enriched miR
- Involved in different neurological processes
- •To our needs:
  - -Present in plasma of stroke patients
  - -Studies showed significant elevation of its serum-levels within 6 hours of ischemic stroke\*

### Initial results


Blood samples of 3 control infants were tested for levels of miR-107 & miR-124:

°2 had a similar trend of reduction in miRs levels

- °1 had opposite results:
  - basal level was significantly higher
  - the level of serum-miRs increased after surgery

His medical file revealed he had congenital hydrocephalus.





#### Questions I would like to answer...

- •What is the miRs trend in healthy and injured infants?
- •When is the best time to withdraw blood, so that the miR will be diagnostic?
- Is the trend of dysregulation consistent in all CHD types?
- •Are these miRs suitable biomarkers for neurological deterioration in infants with preliminary brain damage?

•And more to come....

